1. Dastani M, Mohseni M. Artificial intelligence chatbots in medical education: a literature review of potential benefits and challenges. Int J Med Rev. 2024;11(2):710-5.
2. Dastani M, Kashani M, Mohseani M. Mapping the research on the application of artificial intelligence in cancer: a scientometric analysis. Health Manag Inf Sci. 2023;10(3):121-9.
3. Dol SM, Jawandhiya PM. Classification technique and its combination with clustering and association rule mining in educational data mining-a survey. Eng Appl Artif Intell. 2023;122:106071. [
DOI:10.1016/j.engappai.2023.106071]
4. Dutt A, Ismail MA, Herawan T. A systematic review on educational data mining. IEEE Access. 2017;5:15991-6005. [
DOI:10.1109/ACCESS.2017.2654247]
5. Salloum SA, Alshurideh M, Elnagar A, Shaalan K. Mining in educational data: review and future directions. In: Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020); 2020. Cham: Springer International Publishing; 2020. p. 92-102. [
DOI:10.1007/978-3-030-44289-7_9]
6. Nahar K, Shova BI, Ria T, Rashid HB, Islam AS. Mining educational data to predict students performance: a comparative study of data mining techniques. Educ Inf Technol. 2021;26(5):6051-67. [
DOI:10.1007/s10639-021-10575-3]
7. Khine MS. Educational data mining and learning analytics. In: Khine MS, editor. Artificial intelligence in education: a machine-generated literature overview. Singapore: Springer Nature Singapore; 2024. p. 1-159. [
DOI:10.1007/978-981-97-9350-1_1]
8. Koedinger KR, D'Mello S, McLaughlin EA, Pardos ZA, Rosé CP. Data mining and education. Wiley Interdiscip Rev Cogn Sci. 2015;6(4):333-53. [
DOI:10.1002/wcs.1350] [
PMID]
9. Aleem A, Gore MM, editors. Educational data mining methods: a survey. In: 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT); 2020 Apr 10-12. New York: IEEE; 2020. [
DOI:10.1109/CSNT48778.2020.9115734]
10. do Nascimento RL, das Neves Junior RB, de Almeida Neto MA, de Araújo Fagundes RA. Educational data mining: an application of regressors in predicting school dropout. In: Machine Learning and Data Mining in Pattern Recognition: 14th International Conference, MLDM 2018; 2018 Jul 15-19; New York, NY, USA. Cham: Springer International Publishing; 2018. p. 246-57. [
DOI:10.1007/978-3-319-96133-0_19]
11. Sarra A, Fontanella L, Di Zio S. Identifying students at risk of academic failure within the educational data mining framework. Soc Indic Res. 2019;146(1):41-60. [
DOI:10.1007/s11205-018-1901-8]
12. Yağcı M. Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learn Environ. 2022;9(1):11. [
DOI:10.1186/s40561-022-00192-z]
13. Rojanavasu P. Educational data analytics using association rule mining and classification. In: 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON); 2019. New York: IEEE; 2019. p. 142-5. [
DOI:10.1109/ECTI-NCON.2019.8692274]
14. Li Y, Gou J, Fan Z. Educational data mining for students' performance based on fuzzy C-means clustering. J Eng. 2019;2019(11):8245-50. [
DOI:10.1049/joe.2019.0938]
15. Rueangket P, Thaebanpakul C, Sakboonyarat B, Prayote A. Educational data mining: factors influencing medical student success and the exploration of visualization techniques. Front Educ. 2024;9. [
DOI:10.3389/feduc.2024.1390892]
16. Batool S, Rashid J, Nisar MW, Kim J, Kwon HY, Hussain A. Educational data mining to predict students' academic performance: a survey study. Educ Inf Technol. 2023;28(1):905-71. [
DOI:10.1007/s10639-022-11152-y]
17. Feng G, Fan M, Chen Y. Analysis and prediction of students' academic performance based on educational data mining. IEEE Access. 2022;10:19558-71. [
DOI:10.1109/ACCESS.2022.3151652]
18. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73. [
DOI:10.7326/M18-0850] [
PMID]
19. Alwidian SA, Bani-Salameh HA, Alslaity AA. Text data mining: a proposed framework and future perspectives. Int J Bus Inf Syst. 2015;18(2):127-40. [
DOI:10.1504/IJBIS.2015.067261]
20. Qahmash A, Ahmad N, Algarni A. Investigating students' pre-university admission requirements and their correlation with academic performance for medical students: an educational data mining approach. Brain Sci. 2023;13(3):456. [
DOI:10.3390/brainsci13030456] [
PMID] [
]
21. Monteverde-Suárez D, González-Flores P, Santos-Solórzano R, García-Minjares M, Zavala-Sierra I, de la Luz VL, et al. Predicting students' academic progress and related attributes in first-year medical students: an analysis with artificial neural networks and Naïve Bayes. BMC Med Educ. 2024;24(1):74. [
DOI:10.1186/s12909-023-04918-6] [
PMID] [
]
22. Abedi F, Eghbali B, Akbari N, Sadr E, Salmani F. Online assessment in two consequent semesters during COVID-19 pandemic: K-means clustering using data mining approach. J Educ Health Promot. 2022;11:307. [
DOI:10.4103/jehp.jehp_1466_21] [
PMID] [
]
23. Mastour H, Dehghani T, Moradi E, Eslami S. Early prediction of medical students' performance in high-stakes examinations using machine learning approaches. Heliyon. 2023;9(7). [
DOI:10.1016/j.heliyon.2023.e18248] [
PMID] [
]
24. Zehtab Hashemi H, Abedian S, Parvasideh P, Bahrevar Z, Madani S. Discovering rules from a national exam repository: a use case for data analysis from Iranian medical schools entry exam. Stud Health Technol Inform. 2022;294:796-800. [
DOI:10.3233/SHTI220586] [
PMID]
25. Menon A, Gaglani S, Haynes MR, Tackett S. Using "big data" to guide implementation of a web and mobile adaptive learning platform for medical students. Med Teach. 2017;39(9):975-80. [
DOI:10.1080/0142159X.2017.1324949] [
PMID]
26. Ting TT, Lim ET, Lee J, Wong JS, Tan JH, Tam RC, et al. Educational big data mining: mediation of academic performance in crime among digital age young adults. Online J Commun Media Technol. 2024;14(1):e202403. [
DOI:10.30935/ojcmt/14026]
27. Saqr M, Fors U, Nouri J. Using social network analysis to understand online problem-based learning and predict performance. PLoS One. 2018;13(9):e0203590. [
DOI:10.1371/journal.pone.0203590] [
PMID] [
]
28. Sattari M, Samouei R. Predicting the performance of faculty members of medical universities in providing virtual learning in the covid-19 pandemic in terms of problem-solving methods and their individual social characteristics: a data mining study. Tehran Univ Med J. 2023;80(12):986-91.
29. Rakhmanov O, Dane S, editors. Improving the prediction accuracy of academic performance of the freshman using Wonderlic Personnel Test and Rey-Osterrieth Complex Figure. In: Information and Communication Technology and Applications; 2021. Cham: Springer International Publishing; 2021. [
DOI:10.1007/978-3-030-69143-1_5]
30. Fang J, Zhao W, Jia D, editors. Exercise difficulty prediction in online education systems. In: 2019 International Conference on Data Mining Workshops (ICDMW); 2019 Nov 8-11. New York: IEEE; 2019. [
DOI:10.1109/ICDMW.2019.00053]
31. Hussain S, Atallah R, Kamsin A, Hazarika J, editors. Classification, clustering and association rule mining in educational datasets using data mining tools: a case study. In: Cybernetics and Algorithms in Intelligent Systems; 2019. Cham: Springer International Publishing; 2019. [
DOI:10.1007/978-3-319-91192-2_21]
32. Ebrahimzadeh F, Hajizadeh E, Birjandi M, Feli S, Ghazi S. Predicting the incidence of academic failure in medical students of Lorestan university of medical sciences using classification tree. Iran J Epidemiol. 2018;14(3):234-45.
33. Saadatdoost R, Alex Tze Hiang S, Jafarkarimi H, editors. Application of self organizing map for knowledge discovery based in higher education data. In: 2011 International Conference on Research and Innovation in Information Systems; 2011 Nov 23-24. New York: IEEE; 2011. [
DOI:10.1109/ICRIIS.2011.6125693]
34. Baker RS. Challenges for the future of educational data mining: the Baker learning analytics prizes. J Educ Data Min. 2019;11(1):1-7.
35. Baker RS, Martin T, Rossi LM. Educational data mining and learning analytics. In: Rupp AA, Leighton JP, editors. The Wiley handbook of cognition and assessment: frameworks, methodologies, and applications. Hoboken: Wiley; 2016. p. 379-96. [
DOI:10.1002/9781118956588.ch16] [
PMID]
36. Waheed H, Hassan SU, Aljohani NR, Hardman J, Alelyani S, Nawaz R. Predicting academic performance of students from VLE big data using deep learning models. Comput Human Behav. 2020;104:106189. [
DOI:10.1016/j.chb.2019.106189]
37. Costa-Mendes R, Oliveira T, Castelli M, Cruz-Jesus F. A machine learning approximation of the 2015 Portuguese high school student grades: a hybrid approach. Educ Inf Technol. 2021;26(2):1527-47. [
DOI:10.1007/s10639-020-10316-y]
38. Cruz-Jesus F, Castelli M, Oliveira T, Mendes R, Nunes C, Sa-Velho M, et al. Using artificial intelligence methods to assess academic achievement in public high schools of a European :union: country. Heliyon. 2020;6(6). [
DOI:10.1016/j.heliyon.2020.e04081] [
PMID] [
]
39. Alam A, editor. The secret sauce of student success: cracking the code by navigating the path to personalized learning with educational data mining. In: 2023 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN); 2023 Apr 21-22. New York: IEEE; 2023. [
DOI:10.1109/ICSTSN57873.2023.10151558]
40. Pardo A, Siemens G. Ethical and privacy principles for learning analytics. Br J Educ Technol. 2014;45(3):438-50. [
DOI:10.1111/bjet.12152]
41. Romero C, Ventura S. Educational data mining and learning analytics: an updated survey. Wiley Interdiscip Rev Data Min Knowl Discov. 2020;10(3):e1355. [
DOI:10.1002/widm.1355]
42. Ahmad Z, Shahzadi E. Prediction of students' academic performance using artificial neural network. Bull Educ Res. 2018;40(3):157-64.
43. Lonn S, Aguilar SJ, Teasley SD. Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Comput Human Behav. 2015;47:90-7. [
DOI:10.1016/j.chb.2014.07.013]
44. Aldowah H, Al-Samarraie H, Fauzy WM. Educational data mining and learning analytics for 21st century higher education: a review and synthesis.
45. Telemat Inform. 2019;37:13-49.
46. Nguyen Q, Thorne S, Rienties B. How do students engage with computer-based assessments: impact of study breaks on intertemporal engagement and pass rates. Behaviormetrika. 2018;45(2):597-614 [
DOI:10.1007/s41237-018-0060-1]
47. Joksimović S, Gašević D, Loughin TM, Kovanović V, Hatala M. Learning at distance: effects of interaction traces on academic achievement. Comput Educ. 2015;87:204-17. [
DOI:10.1016/j.compedu.2015.07.002]
48. Siemens G. Learning analytics: the emergence of a discipline. Am Behav Sci. 2013;57(10):1380-400. [
DOI:10.1177/0002764213498851]